Mixed Hodge Complexes

Jesse Vogel

Fix R to be \mathbb{Z}, \mathbb{Q} or \mathbb{R} throughout all sections. The field of fractions $R \otimes \mathbb{Q}$ will be \mathbb{Q}, \mathbb{Q} or \mathbb{R} , respectively.

Filtrations F will always be decreasing, and filtrations W will always be increasing.

This talk is based on Section 3.3 of [Hodge]. The goal is to define (cohomological) mixed Hodge complexes and give constructions

cohomological MHC \implies MHC \implies MHS

with the goal of showing every mixed Hodge complex has a mixed Hodge structure on its cohomology.

1 Derived categories of filtered objects

Let \mathcal{A} be an abelian category. From this one defines the following categories.

- $F\mathcal{A}$ the category of filtered objects of \mathcal{A} with finite filtrations,
- $FW\mathcal{A}$ the category of bi-filtered objects of \mathcal{A} with finite filtrations,
- $C^+F\mathcal{A}$ the category of complexes of $F\mathcal{A}$ bounded from below,
- $C^+FW\mathcal{A}$ the category of complexes of $FW\mathcal{A}$ bounded from below
- K⁺FA be the homotopy category of filtered complexes bounded from below
 (A homotopy between morphisms of complexes of filtered objects is simply a homotopy between the morphisms of underlying complexes, compatible with the filtrations.)
- $K^+FW\mathcal{A}$ be the homotopy category of bi-filtered complexes bounded from below (Again a *homotopy* should be compatible with both filtrations.)
- $D^+F\mathcal{A}$ be obtained from $K^+F\mathcal{A}$ by inverting filtered quasi-isomorphisms
- $D^+FW\mathcal{A}$ be obtained from $K^+FW\mathcal{A}$ by inverting *bi-filtered quasi-isomorphisms*

To understand the last two categories, we must define what are '(bi-)filtered quasi-isomorphisms'.

Recall that a filtration on a complex K is biregular if the filtration on K^n is finite for each n.

Definition 1. A morphism $f: (K, F) \to (K', F')$ of complexes with biregular filtrations is a *filtered* quasi-isomorphism if $\operatorname{Gr}_F(f)$ is a quasi-isomorphism.

A morphism $f : (K, W, F) \to (K', W', F')$ of complexes with biregular filtrations is a *bi-filtered* quasi-isomorphism if $\operatorname{Gr}_F \operatorname{Gr}^W(f)$ is a quasi-isomorphism.

Remark 2. The above definition used the following. If a complex K has two filtrations, F and W, then F induces by restriction a new filtration F on the terms $W_k K$, induces a quotient filtration on the graded pieces $\operatorname{Gr}_k^W(K)$. This yields graded complexes $\operatorname{Gr}_F(K)$, $\operatorname{Gr}^W(K)$ and $\operatorname{Gr}_F \operatorname{Gr}^W(K)$.

Remark 3. Note that the cone C(f) of a morphism of (bi-)filtered complexes is also naturally (bi-)filtered. This naturally gives the notion of an exact triangles in $K^+F\mathcal{A}$ and $D^+F\mathcal{A}$.

2 Derived functors on filtered objects

Let $T: \mathcal{A} \to \mathcal{B}$ be a left exact functor of abelian categories, and suppose \mathcal{A} has enough injectives.

Lemma 4. Let (A, F) be a filtered object in FA. Since T is left exact, the subobjects $TF^p(A)$ define a filtration TF of TA. If $Gr_F(A)$ is T-acyclic, then $Gr_{TF}(TA) \cong T(Gr_F A)$.

Proof. If $\operatorname{Gr}_F(A)$ is *T*-acyclic, the subobjects F^pA are *T*-acyclic as successive extensions of *T*-acyclic objects. Hence the image under *T* of the exact sequence

$$0 \to F^{p+1}(A) \to F^p(A) \to \operatorname{Gr}_F^p(A) \to 0$$

is exact.

Definition 5. Let (K, F) be a filtered complex with biregular filtrations. A filtered *T*-acyclic resolution of K is a filtered quasi-isomorphism $f : (K, F) \to (K', F')$, with F' also biregular, such that $\operatorname{Gr}_{F}^{p}(K'^{n})$ is *T*-acyclic for all n and p.

Proposition 6. Suppose we are given functorially for each filtered complex (K, F) a filtered *T*-acyclic resolution $i: (K, F) \rightarrow (K', F')$. Define $T': C^+F\mathcal{A} \rightarrow D^+F\mathcal{B}$ by T'(K, F) = (TK', TF'). Then T' sends filtered quasi-isomorphisms to isomorphisms in $D^+F\mathcal{B}$, and hence T' factors through a derived functor

$$RT: D^+F\mathcal{A} \to D^+F\mathcal{B}$$

such that RT(K, F) = (TK', TF'). Moreover, $\operatorname{Gr}_F RT(K) \cong RT(\operatorname{Gr}_F K) \cong \operatorname{Gr}_{TF'}(TK')$.

Example 7. Let K be a complex with the stupid filtration $F^p(K) = \sigma_{\geq p}(K)$. One can find a *T*-acyclic resolution using the Cartan–Eilenberg resolution $K \to \text{Tot}(I^{\bullet,\bullet})$, where $I^{n,\bullet}$ are *T*-acyclic resolutions of K. There is a suitable filtration F' on $K' = \text{Tot}(I^{\bullet,\bullet})$ such that the morphism $(K, F) \to (K', F')$ is a filtered quasi-isomorphism.

3 Derived functors on bi-filtered objects

Definition 8. Let (K, W, F) be a bi-filtered complex with biregular filtrations. A bi-filtered *T*-acyclic resolution of K is a bi-filtered quasi-isomorphism $f : (K, W, F) \to (K', W', F')$, with F' and W' also biregular, such that $\operatorname{Gr}_F^p \operatorname{Gr}_q^W(K'^n)$ are *T*-acyclic for all n, p and q.

Proposition 9. Suppose we are given functorially for every bi-filtered complex (K, W, F) a bifiltered T-acyclic resolution $i : (K, W, F) \rightarrow (K', W', F')$. Define $T' : C^+FW\mathcal{A} \rightarrow D^+FW\mathcal{B}$ by T'(K, W, F) = (TK', TF', TW'). Then T' sends bi-filtered quasi-isomorphisms to isomorphisms in $D^+FW\mathcal{B}$, and hence T' factors through a derived functor

$$RT: D^+FW\mathcal{A} \to D^+FW\mathcal{B}.$$

Moreover, $\operatorname{Gr}_F \operatorname{Gr}^W(RT(K)) \cong RT(\operatorname{Gr}_F \operatorname{Gr}^W K).$

4 Hodge complexes

Definition 10. An R-Hodge complex K of weight n consists of

- a complex K_R of R-modules, such that all $H^i(K_R)$ are finitely generated R-modules,
- a filtered complex $(K_{\mathbb{C}}, F)$ of \mathbb{C} -vector spaces,
- an isomorphism $\alpha : K_R \otimes \mathbb{C} \xrightarrow{\sim} K_{\mathbb{C}}$ in $D^+(\mathbb{C})$,

such that

(HC 1) the differentials d^i are strict, that is, $d^i(F^p(K_R^i)) = d^i(K_R^i) \cap F^p(K_R^{i+1})$,

(HC 2) the induced filtration F on $H^i(K_{\mathbb{C}}) \cong H^i(K_R) \otimes \mathbb{C}$ defines an R-Hodge structure of weight n+i on $H^i(K_R)$.

Definition 11. Let X be a topological space. An *R*-cohomological Hodge complex K of weight n on X consists of

- a complex K_R of sheaves of *R*-modules on *X*,
- a filtered complex $(K_{\mathbb{C}}, F)$ of sheaves of \mathbb{C} -vector spaces on X,
- an isomorphism $\alpha: K_R \otimes \mathbb{C} \xrightarrow{\sim} K_{\mathbb{C}}$ in $D^+(X, \mathbb{C})$,

such that

(CHC) the triple $(R\Gamma(X, K_R), R\Gamma(X, K_{\mathbb{C}}, F), R\Gamma(\alpha))$ is an *R*-Hodge complex of weight *n*.

Remark 12. If (K, F) is a (cohomological) Hodge complex of weight n, then (K[m], F[p]) is a (cohomological) Hodge complex of weight n + m - 2p.

Remark 13. The Hodge decomposition theorem may be stated as follows. Let X be a compact complex algebraic manifold. Let $K_{\mathbb{Z}}$ be the constant sheaf \mathbb{Z} on X concentrated in degree 0. Let $K_{\mathbb{C}} = \Omega^{\bullet}_{X}$ be the analytic de Rham complex with its stupid filtration by subcomplexes

$$F^{p}\Omega_{X}^{\bullet} = \left[0 \to \dots \to 0 \to \Omega_{X}^{p} \to \Omega_{X}^{p+1} \to \dots \to \Omega_{X}^{n} \to 0\right].$$

Let $\alpha : K_{\mathbb{Z}} \otimes \mathbb{C} \xrightarrow{\sim} K_{\mathbb{C}}$ be the quasi-isomorphism given by the Poincaré lemma. Then $(K_{\mathbb{Z}}, (K_{\mathbb{C}}, F), \alpha)$ is a cohomological Hodge complex on X of weight 0. Its hypercohomology on X is isomorphic to the cohomology of X and carries a Hodge structure with Hodge filtration induced by F.

5 Mixed Hodge complexes

Definition 14. An *R*-mixed Hodge complex K consists of

- a complex K_R of R-modules, such that all $H^i(K_R)$ are finitely generated R-modules,
- a filtered complex $(K_{R\otimes\mathbb{Q}}, W)$ of $(R\otimes\mathbb{Q})$ -vector spaces, and an isomorphism $K_R\otimes\mathbb{Q} \xrightarrow{\sim} K_{R\otimes\mathbb{Q}}$ in $D^+(R\otimes\mathbb{Q})$,
- a bi-filtered complex $(K_{\mathbb{C}}, W, F)$ of \mathbb{C} -vector spaces
- an isomorphism $\alpha : (K_{R\otimes \mathbb{Q}}, W) \otimes \mathbb{C} \xrightarrow{\sim} (K_{\mathbb{C}}, W)$ in $D^+W(\mathbb{C})$,

such that, for all n, the system $\operatorname{Gr}_n^W(K)$ consisting of

- the complex $\operatorname{Gr}_n^W(K_{R\otimes\mathbb{Q}})$ of $(R\otimes\mathbb{Q})$ -vector spaces,
- the complex $\operatorname{Gr}_n^W(K_{\mathbb{C}}, F)$ of \mathbb{C} -vector spaces with induced filtration F,
- the isomorphism $\operatorname{Gr}_n^W(\alpha) : \operatorname{Gr}_n^W(K_{R\otimes\mathbb{Q}})\otimes\mathbb{C} \xrightarrow{\sim} \operatorname{Gr}_n^W(K_{\mathbb{C}}),$

forms an $(R \otimes \mathbb{Q})$ -Hodge complex of weight n.

Definition 15. An R-cohomological mixed Hodge complex K on a topological space X consists of

- a complex K_R of sheaves of *R*-modules on *X*, such that all $H^i(X, K_R)$ are finitely generated *R*-modules,
- a filtered complex $(K_{R\otimes\mathbb{Q}}, W)$ of sheaves of $(R\otimes\mathbb{Q})$ -vector spaces on X, and an isomorphism $K_R\otimes\mathbb{Q}\cong K_{R\otimes\mathbb{Q}}$ in $D^+(X, R\otimes\mathbb{Q})$,
- a bi-filtered complex $(K_{\mathbb{C}}, W, F)$ of sheaves of \mathbb{C} -vector spaces on X,
- an isomorphism $\alpha : (K_{R\otimes \mathbb{Q}}, W) \otimes \mathbb{C} \xrightarrow{\sim} (K_{\mathbb{C}}, W)$ in $D^+F(X, \mathbb{C})$.

such that, for all n, the system $\operatorname{Gr}_n^W(K)$ consisting of

- the complex $\operatorname{Gr}_n^W(K_{R\otimes\mathbb{Q}})$ of sheaves of $(R\otimes\mathbb{Q})$ -vector spaces on X,
- the complex $(\operatorname{Gr}_n^W(K_{\mathbb{C}}), F)$ of sheaves of \mathbb{C} -vector spaces on X with induced filtration F,
- the isomorphism $\operatorname{Gr}_n^W(\alpha) : \operatorname{Gr}_n^W(K_{R\otimes\mathbb{Q}}) \otimes \mathbb{C} \xrightarrow{\sim} \operatorname{Gr}_n^W(K_{\mathbb{C}}),$

is an $(R \otimes \mathbb{Q})$ -cohomological Hodge complex on X of weight n.

Remark 16. If (K, W, F) is a (cohomological) MHC, then for all $m, p \in \mathbb{Z}$, also (K[m], W[m - 2p], F[p]) is a (cohomological) MHC.

The following proposition shows how one obtains a mixed Hodge complex from a cohomological mixed Hodge complex.

Proposition 17. Let $K = (K_R, (K_{R \otimes \mathbb{Q}}, W), (K_{\mathbb{C}}, W, F), \alpha)$ be an *R*-cohomological MHC. Then

$$R\Gamma(K) := (R\Gamma(K_R), R\Gamma(K_{R\otimes\mathbb{Q}}, W), R\Gamma(K_{\mathbb{C}}, W, F), R\Gamma(\alpha))$$

is an R-MHC.

Proof. One needs to check that

$$\operatorname{Gr}_{n}^{W}(R\Gamma(K)) = (\operatorname{Gr}_{n}^{W}(R\Gamma(K_{R\otimes\mathbb{Q}})), \operatorname{Gr}_{n}^{W}(R\Gamma(K_{\mathbb{C}}, F)), \operatorname{Gr}_{n}^{W}(R\Gamma(\alpha)))$$
$$\cong (R\Gamma(\operatorname{Gr}_{n}^{W}(K_{R\otimes\mathbb{Q}})), R\Gamma(\operatorname{Gr}_{n}^{W}(K_{\mathbb{C}}, F)), R\Gamma(\operatorname{Gr}_{n}^{W}(\alpha)))$$

is an $(R \otimes \mathbb{Q})$ -Hodge complex. But this is just the image under $R\Gamma$ of the $(R \otimes \mathbb{Q})$ -cohomological Hodge complex $\operatorname{Gr}_n^W(K)$ on X, which is indeed an $(R \otimes \mathbb{Q})$ -Hodge complex by condition (CHC). \Box

6 MHS on the cohomology of a MHC

The goal of this section is to prove the following theorem.

Theorem 18 (Deligne). The cohomology of a mixed Hodge complex carries a mixed Hodge structure.

The idea of the proof is to show that the terms ${}_{W}E_{r}^{p,q}$ of the weight spectral sequence of a MHC (K, W, F) are Hodge structures of weight q, and the differentials d_{r} are strictly compatible with the Hodge filtrations, that is, are morphisms of Hodge structures. Then d_{r} will vanish for $r \geq 2$, so the spectral sequence will degenerate at rank 2.

6.1 Spectral sequences of filtered complexes

Let $T : \mathcal{A} \to \mathcal{B}$ will be a left exact functor, and assume \mathcal{A} has enough injectives.

Let (K, F) be an object of $D^+F\mathcal{A}$. The spectral sequence defined by the filtered complex RT(K, F) is [Hodge, 3.1.2.1] given by

$$_{F}E_{1}^{p,q} = H^{p+q}(\operatorname{Gr}_{F}^{p}RT(K)) \Rightarrow \operatorname{Gr}_{F}^{p}R^{p+q}T(K).$$

Since $H^{p+q}(\operatorname{Gr}_F^p RT(K)) \cong H^{p+q}(RT(\operatorname{Gr}_F^p K)) = R^{p+q}T(\operatorname{Gr}_F^p K)$, we will write this sequence as

$$_{F}E_{1}^{p,q} = R^{p+q}T(\operatorname{Gr}_{F}^{p}K) \Rightarrow \operatorname{Gr}_{F}^{p}(R^{p+q}T(K)).$$

This spectral sequence is called the (hypercohomology) spectral sequence of the filtered complex K with respect to the functor T.

Remark 19. Explicitly, the differentials d_1 of this spectral sequence are the image under T of $\operatorname{Gr}_F^p(K) \xrightarrow{\delta} (\operatorname{Gr}_F^{p+1} K)[1]$ given by the exact sequence

$$0 \to \operatorname{Gr}_F^{p+1}(K) \to F^p K / F^{p+2} K \to \operatorname{Gr}_F^p(K) \to 0.$$

6.2 Direct and recurrent filtrations

Let (K, W, F) be a bi-filtered complex of objects of an abelian category, bounded below. Similarly to the above, the filtration W yields the *weight spectral sequence*

$${}_WE_1^{p,q} = R^{p+q}(\operatorname{Gr}^W_{-p}K) \Rightarrow \operatorname{Gr}^W_{-p}(R^{p+q}T(K)).$$

The filtration F, assumed to be biregular, induces on the terms $E_r^{p,q}$ of the spectral sequence E(K, W) the following filtrations.

Definition 20. The first direct filtration F_d on $E_r(K, W)$ is defined by

$$F_d^p(E_r(K,W)) = \operatorname{im} \left(E_r(F^pK,W) \to E_r(K,W) \right).$$

The second direct filtration F_{d^*} on $E_r(K, W)$ is defined by

$$F^p_{d^*}(E_r(K,W)) = \ker \left(E_r(K,W) \to E_r(K/F^pK,W) \right).$$

Definition 21. The *recurrent filtration* F_{rec} on $E_r^{p,q}$ is defined inductively as follows:

- On $E_0^{p,q}$, it is $F_{\text{rec}} = F_d = F_{d^*}$.
- The recurrent filtration F_{rec} on $E_r^{p,q}$ induces a filtration on ker d_r , which induces a recurrent filtration on F_{rec} on $E_{r+1}^{p,q}$ as a quotient of ker d_r .

In general, these definitions will be different, but we need the following general properties.

Proposition 22. (i) $F_d \subset F_{rec} \subset F_{d^*}$ with equalities for r = 0, 1,

(ii) the differential d_r is compatible with F_d and F_{d^*} .

Proof. (i) follows from [Hodge, Lemma 3.2.27]. (ii) follows from [Hodge, Proposition 3.2.29]. \Box

Remark 23. The point is that F_d and F_{d^*} interact well with respect to the differential d_r (but in general F_{rec} does not). However, the induced Hodge structure on the terms $E_{r+1}^{p,q}$ will be given by F_{rec} . Hence, these three different filtrations need to be compared, and it will turn out that, for ${}_{W}E_r^{p,q}$ coming from a MHC, the three filtrations will agree for all r!

6.3 Proof of Theorem 18

Let us start with the following lemma.

Lemma 24. For all $r \ge 1$, the two direct filtrations and the recurrent filtration on ${}_W E_r^{p,q}$ agree (that is, $F_d = F_{rec} = F_{d^*}$) and the differentials d_r are strictly compatible with the recurrent filtration $F = F_{rec}$. For $r \ge 2$, they vanish.

Proof. Proof by induction on r.

Suppose r = 1. By definition of a MHC, we have that $\operatorname{Gr}_{-p}^{W}(K)$ is a HC of weight -p. For r = 1, we have $F_d = F_{\operatorname{rec}} = F_{d^*}$ [Hodge, Lemma 3.2.27], so these filtrations equal the Hodge filtration on ${}_{W}E_1^{p,q} = H^{p+q}(\operatorname{Gr}_{-p}^{W}K)$. The differential d_1 is compatible with F_d and F_{d^*} [Hodge, Proposition 3.2.29] and hence with F_{rec} . Furthermore, d_1 commutes with complex conjugation since it is defined over $R \otimes \mathbb{Q} \subset \mathbb{R}$, so d_1 is also compatible with $\overline{F}_{\operatorname{rec}}$, that is, d_1 is strictly compatible with $F = F_{\operatorname{rec}}$.

The filtration F_{rec} is *q*-opposed to $\overline{F}_{\text{rec}}$ (as ${}_{W}E_{1}^{p,q} = H^{p+q}(\operatorname{Gr}_{-p}^{W}K)$ is a HS of weight -p+(p+q) = q) and hence defines a HS of weight q on ${}_{W}E_{2}^{p,q} = \ker d_{1}^{p,q}/\operatorname{im} d_{1}^{p+1,q}$.

Now suppose $r \ge 2$ and assume that the statement holds for all s < r. Note that condition $(*r_0)$ of [Hodge, Theorem 3.2.30] is satisfied for $r_0 = r$, so $F_d = F_{rec} = F_{d^*}$ also for rank r. This also shows that d_r is compatible with F_{rec} . Again, F_{rec} is q-opposed to \overline{F}_{rec} . Now, $d_r : {}_W E_r^{p,q} \to {}_W E_r^{p+r,q-r+1}$ is a morphism of Hodge structures from weight q to weight q - r + 1 < q, so it must vanish. In particular, the weight spectral sequence degenerates at rank 2.

Proposition 25. Let K be an R-mixed Hodge complex.

(i) The filtration W[n] on $H^n(K_R) \otimes \mathbb{Q} \cong H^n(K_{R \otimes \mathbb{Q}})$, given by

 $W[n]_k H^n(K_{R\otimes\mathbb{Q}}) := \operatorname{im} \left(H^n(W_{k-n}K_{R\otimes\mathbb{Q}}) \to H^n(K_{R\otimes\mathbb{Q}}) \right),$

and the filtration F on $H^n(K_{\mathbb{C}}) \cong H^n(K_R) \otimes_R \mathbb{C}$, given by

$$F^p(H^n(K_{\mathbb{C}})) := \operatorname{im} \left(H^n(F^pK_{\mathbb{C}}) \to H^n(K_{\mathbb{C}}) \right),$$

define an R-mixed Hodge structure

$$H^{n}(K) := (H^{n}(K_{R}), (H^{n}(K_{R\otimes \mathbb{Q}}), W), (H^{n}(K_{\mathbb{C}}), W, F)).$$

- (ii) On the terms ${}_{W}E_{r}^{p,q}(K_{\mathbb{C}},W)$, the recurrent filtration and the two direct filtrations coincide $(F_{d} = F_{rec} = F_{d^{*}})$ and define the filtration F of a Hodge structure of weight q. Moreover, the differentials d_{r} are compatible with F.
- (iii) The morphisms $d_1: {}_WE_1^{p,q} \to {}_WE_1^{p+1,q}$ are strictly compatible with F.
- (iv) The spectral sequence of $(K_{R\otimes \mathbb{Q}}, W)$ degenerates at rank 2. (Hence, $_WE_2^{p,q} = _WE_{\infty}^{p,q}$.)
- (v) The spectral sequence of $(K_{\mathbb{C}}, F)$ degenerates at rank 1. (Hence, $_{F}E_{1}^{p,q} = _{F}E_{\infty}^{p,q}$.)
- (vi) The spectral sequence of the complex $\operatorname{Gr}_F^p(K_{\mathbb{C}})$, with the induced filtration W, degenerates at rank 2.

Proof. (ii), (iii) and (iv) follow from Lemma 24. For (i), it must be shown that the graded pieces $\operatorname{Gr}_{k}^{W[n]}(H^{n}(K_{R\otimes\mathbb{Q}}))$, with the induced filtration F, are Hodge structures of weight k. But these graded pieces are precisely ${}_{W}E_{\infty}^{n-k,k}$, which we have seen to be Hodge structures of weight k. Furthermore, (v) has already been shown in [Hodge, Section 3.1], and follows from the fact that the differentials are strictly compatible with the filtration F. Finally, (vi) is just (iv) but switching F and W.